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COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS IN THE
MULTIDISCIPLINARY DESIGN OF AN AEROSPIKE NOZZLE

TIMOTHY W. SIMPSON'

Abstract. Tile use of response surface models and kriging models are compared for approximating

non-randonl, deterministic (:omputer analyses. After discussing the traditional response surface al)proach

for constructing polynonlial model._ for apl)roximation , kriging is t)resented as an alternative statistical-

based approximation method for the (tesign and analysis of comi)uter experiments. Both al)proximation

nmthods are applied to the nmltidisciplinary design and analysis of an aerospike nozzle which consists of a

('olnputational fluid dynamics m(_lel and a finite element analysis m(xlel. Error analysis of the respolk_e

surface and kriging models is performed along with a graphical comt)arison of the approximations. Four

optimization l)roblenis are fornlulate(l and solved 1Lsing ]x)th approximatioll models. While neither

approxilnation technique consistently outperfornks the other in this examl)le , the kriging models--using

only a constant for the underlying global model and a (;aussian correlation function- perform as well as

the second order polynomial resi)onsc surface nlodels.

Key words, rest)onse surface m(xlels, kriging, multidisciplinary design

Subject classification. Applie(l an(l Numerical Metho(Ls

1. Introduction. Current engineering analyses rely heavily on running complex, and often

expensive, computer analysis codes. Despite the steady and continuing growth of colnputing power and

st)eed , the conlplexity of these codes seems to kee l) pace with computing advances. Statistical techniques

are widely used in engineering (lesign to construct approxim_tion._ of these analysi.u codes; these

apl)roximations are then used in lieu of the actual analysis codes, offering the following t_nefits.

• They yiel(t insight, into the relatiolrshii) between (output) responses, y, and (inl)ut) design variables,

x.

• They provide fast analysis tools for optinlization and design space exploration since the cheal)-to-run

approximations replace the ext)ensive-to-run conq)uter analyses.

• They facilitate the integration of discipline dependent analysis codes.

The nlost common method for building approximations of computer analyses is to apply design of

experiments (DOE), response surface (RS) models, and regression analysis to I)uild second order

t×)lynomial approximations of the computationally expensive analy_s. For example, the Robust Concet)t

Exploration Method (see, e.g., I51 and !6]) has been developed to facilitate quick evaluation of different

design alternatives, identify important design drivers, and generate robust top-level design specifications

using DOE, RS models, and the conlt)rolnise I_cision Support Problem [25]; it ha._ been suceessfiflly

applied to the multiobjeetive design of a high speed civil transport (see, e.g., I51 and I19]), a family of

General Aviation aircraft i40], a turbine lift engine I18], and a flywheel [22]. In other work, the Variable

Complexity Response Surface Modeling (VCRSM) method (see, e.g., !121 and [131) uses analyses of

varying fidelity to reduce the design space to the region of interest and build response surface models of

'NSF (graduate Research Fellow, Systems Realization Lal)oratory, (_eorge V_r. Woodruff ,¢_hool of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (gt0037eCO)prism.gatech.edu). This research was
supported I)y the National Aeronautics and Space Administration un(ter NASA Contract No. NASI-19480 while the author
was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), MS 403, NASA Langley
Research Center, Hampton, VA 23681-(1_1()1.



increasingaccuracy.Tile VCRSMmeth(xlemt)loysDOE andRS modelingtechniquesand hasI)een
successfullyappliedto tile multidisciplinarywingdesignof a highspeedcivil transport(see,e.g.,[14] and

i17]), to the analysis and design of composite curved channel frames [2.11, and to reduce numerical noise

inherent in structural analyses (see, e.g., [141 and [451) and shape design problems using fluid flow analysis

!29 I. A review of several applications of response surfaces in mechanical and aerospace engineering design

is given in [41 I.

The use of response surfaces for approximating deterministic (i.e., non-random) computer analyses is

statistically questionable due to the lack of random error in the computer model (cf., [41i). A more

appropriate and perhaps more "statistically sound" method for approxinmting deterministic compuler

experiments is through the use of kriging [9 i models which are also referred to as the Design and Analysis

of Colnl)uter Extx_rilnents (DACE) models (see, e.g., [4], [20], and [38]). The validity of the kriging model

is not dependent on the existence of random error and nmy therefore be better suited for applications

involving deternfinisti(' comi)uter experiments. Furthermore, kriging models interpolate between data

1x)ints which may 1)e yield more accurate results since computer experinmnts typically do not contain

random error (i.e.. you get the same output when you use the same input).

Booker 12 ('ontrasts Iraditional DOE and RS modeling with DACE models. In the "classical" design

and analysis of 1)hysical cxtx_riments, random variation is accounted for by spreading the sample points

out in the design space and by taking multiple data points (replicates), see FIG. 1. Sacks, et al. [38] state

that the ki('l_L_si(-al notions of experimental blocking, replication, and randomization are irrelevant when

it comes to delerminkstic coml)uter experiments; thus, sample points should be chosen to fill the design

space. They su,g_(_l minimizing the integrated mean squared error (IMSE) over the design region by

using IMSl:,-Ol)timal d(._igns such as the one shown in the top right corner of FI(:. 1.
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FIG. 1. C'omparisonofDOE/RSmodeliTigandDACE/Kri_ing(adapted/rom[21).



As shown in the middle of FIG. 1, response surface modeling typically employs least squares

regression to fit a polynomial model to tile sampled data; kriging models are chosen to interpolate tile

data and are fit using nmximum likelihood estimation (see, e.g., [20]). Validation of I{S models is based

on: (a) testing statistical hypothesis (t-tests and F-statistics) derived from error estimates of the

variability in the data, (b) plotting and checking the residuals, and (c) computing 1R'_, the ratio of the

model sun, of squares to the total sum of squares (see, e.g., (28]). Sacks, el al. [38] and Welch, el al. [47]

t)oth state tha¢ statistical testing is inappropriate when it comes to deterministic comput.er extmrimenls

which lack random error; cross-validation and integrat.e mean square error can be utilized to assess the

accuracy of a kriging model.

DACE and kriging models have found linfited application in engineering design perhat_s because of

the lack of readily available software to fit. kriging models, the added complexity of fitting a kriging

model, or the additional effort required t,o use a kriging model. To clarify this last point, prediction with

a kriging model requires the inversion and multiplication of several matrices, and the kriging m¢×lel &_es

not exist as a "closed-form" l)olynomial equation. RS m(xlel prediction only requires computation of

simple polynomial equation once a model has been fit. The goal in this paper is to examine the added

computational expense required to perform kriging and compare the predictive capability of kriging and

RS models.

In Section 2 an overview of the statistieal and mathematical foundations of response surface modeling

and kriging is given. In Section 3 the multidisciplinary design of an aerospike nozzle is introduced; it

serves as a test problem to compare RS and kriging models for approximation. In Section 4 the t{S and

kriging models are constructed for the aerospike nozzle example. In Section 5 four optimization problems

are formulated and solved using the |{S and kriging models; Section 6 contaills a discussion of ongoing

work.

2. Statistical Approximations for Computer Experiments. Building al)proximations of

comput,er analyses typically involves: (a) choosing an experimental design to sample the computer

analysis code, (l)) choosing a model 1o represent the data, and (c) fitting the model to the ol)served data.

There are a variety of ot)liolLs for each of these steps as shown in FIG. 2, and some of the more prevalent

ones have been highlighted.
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Simpson, et al. [41] discuss _vcral of the advantages and disadvantages of the highlighted

approaches listed ill FIG. 2. namely, response surface methodoloKy, neural networks, in(tuctive learning

and kriging. In this work, the model choice and model fitting portions of building approximations are the

primary concern; respon_ surface models are discussed in Section 2.1 and kriging models in Section 2.2.

It is assumed that the reader has some knowledge of DOE and RS modeling and little to no knowledge of

kriging.

2.1. Overview of Response Surface Modeling. Respolr_ surface modeling techniques were

originally develot_d to analyze the results of physical experiments and create empirically-based models of

the ol)served restx)nse values. Resl)onse surface modeling p.0stulates a model of the form:

(1) y(x) = f(x) * e

where y(x) is the unknown function of interest, f(x) is a known polynomial function of x, and e ks random

error which is assumed to be normally distributed with mean zero and variance (_2. The individual errors,

el, at each ot_servation are also assumed to be indetxm(tent and identically distributed. The tx)lynomial

function, f(x), used to approxinmte y(x) is typically a low order polynomial which is assumed to }x_ either

linear as given by EQN. (2):

k

(2) 9 =_0 "F Z_iXi
i=l

or quadratic as given I)3, EQN. (3):

(3)
k k

29= 0 +Z ,x, + Z Z ,jx,xj
i=l ii =! i<j



Tile parameters _0, [_i, _n, and [_ij, of the polynomials in EQNS. (2) and (3) are determined through

least squares regression which minimizes the sum of the squares of the deviations of the predicted values,

(x), from the actual values, y(x). In order to fit the model to the observed data using least squares

regression, the coefficients of EQNS. (2) and (3) can be estimated using EQN. (,1).

(4) [_=[X'Xi-'X'y

In EQN. (4), X is the design matrix of sampled l×)ints, and y is a column vector ('ontaining the

corresl)onding values of the response. For more details on least squares regression or polynomial RS

modeling see, e.g., [28].

2.2. Overview of Kriging.

2.2.1. Mathematics of Kriging. Kriging, or DACE modeling, postulates a combination of a

polynomial model t)lus det)artures of the form given t)y EQN. (5):

(5) y(x) = r(x) - Z(x)

where y(x) is the unknown filllCtioll of interest, f(x) is a known polynomial function of x, and Z(x) is the

realization of a normally distributed Gauss|an random process with mean zero, variance (_2, and non-zero

covariance. The f(x) term in EQN. (5) is similar to the i)olynomial model in a response surface and

provides a "global" m(×lel of the design space; in many eases f(x) is simt)ly taken to t)e a constant term

(see, e.g., [20], [38], and [47]).

While f(x) "glolmlly" approximates the design space, Z(x) creates "localized" deviations so that the

kriging model interl)olates the n_ sampled data points. The covariance matrix of Z(x) is given by EQN.

(6).

(6) Cov[Z(x_),Z(xJ)] = a 2 R([R(x_,xJ)])

In EQN. (6), R is the correlation matrix, and R(x_,x j) is the spatial correlation fimction t×_tween any two

of the n_ sample l)oints x i and xJ. R is a n_ x n_ symmetric, positive definite nmtrix with ones along the

diagonal. The correlation function R(x_,x j) is specified by the user; Sacks, el al. 1381 and K(×_hler and

Owen I20] discuss several correlation fimctions. The Gauss|an correlation function in EQN. (7) is

employed in this work.

(7) R(xi,x j) -- exp(- __.,_ :_ 0k]x_ - xL] 2 )

The Ok in EQN. (7) are the unknown parametem used to fit the model, lldv is the number of design

variables, and Xki and XkJ are the k TM components of sample points x i and xJ. In some cases, using a

single correlation parameter gives sufficiently good results (see, e.g., [4], [30], and 1381).

Predicted estimates. 9(x), of the response y(x) at untried vahms of x are given by EQN. (8):

(s) 9=_ +rT(x)Rl(y-F _ )



where y is the column vector of length ns which contains the values of the response at each sample point,

and F is a column vector of length ns which is filled with ones when f(x) is taken as a constant.. In EQN.

(8), r(x) is the correlation vector of length n._ between an untried x and the sampled data points Ix l, x 2,

.... x", and is given by EQN. (9).

(9) rT(x) = [R(x,x'), R(x,x2), ..., R(x,xn_)] T

In EQN. (8), _ is estimated using EQN. (10).

(10) =(FTR-1F)FTR-ly

The estinmte of the variance, 5 2 , of the sample points from the underlying global model (not the variance

in the ob_rved data it_lf) is given by EQN. (11):

-2 (y-F_ TR'(y -F_)
(11) o -

ns

where f(x) is a_umed to be the constant _. Tile maxinmm likelihood estimates (i.e., "best gue_es") for

the Ok iLl EQN. (7) used to fit the model are found by maximizing EQN. (12) over Ok > 0 (see, e.g., [4]).

max [n.ln(62)+ In(detR)]
(t2) e. >o - 2

Both _2 and detR are functions of 0k. While any values for Ok create an interpolative model, the "best"

kriging m(xtel is foun(1 by solving the k-dimensional unconstrained, non-linear, ot)timization l)roblem given

by EQN. (12).

2.2.2. Applications of DACE and Krlg|ng. DACE and kriging models have found limited use in

engineering design applications since its introduction into the literature by Sacks, et al. [381. G'iunta [11]

has performed a preliminary investigation into the use of DACE modeling for the multidisciplinary design

optimization of a High Speed Civil Transport aircraft. He explores a 5 and a 10 variable design problem,

observing that the DACE and response surface modeling approaches yield similar results duc to the

quadratic trend of the rest)onses. Osio and Amon [301 have developed an extel_ion of DACE modeling for

numerical optimization which uses a nmltistage strategy for refining the accuracy of the model; they have

applied their approach to the thermal design of an emi_dded electronic package which has 5 design

variables. Welch, et al. [46! describe a kriging-based approximation methodology which they use to

identify important variables, detect curvature and interactions, and pro(lucc a useful approximation model

for two 20 variable problen_s using only 30-50 runs of the computer code; they claim their meth(gl can

cope with up to 30-40 variables provided factor sparsity can t)e exploited. Booker, et al. [31 solve a 31

variable helicopter rotor structural design problem using an approximation method based on kriging.

Booker [21 extends the helicopter rotor design problem to include 56 structural variables to examine the

aeroelastie and dynamic response of the rotor. Trosset and Torczon [44] have developed a numerical

optimization strategy which incorporates DACE modeling and pattern search methods for global

optimization. Cox and John [71 have developed the Sequential Design for Optimization method which



uses lower confidence bounds on predicted values of the response for the sequential selection of evaluation

l)oints during optimization. Both approaches have shown improvenmnis over traditional optimization

approaches when applied to a variety of standard mathematical test problems.

2.3. One Variable Example of Response Surface and Kriging Models. A simple one variable

example bests illustrates the difference between the at)t)roximation capabilities of a second order RS

model and a kriging model. Su and Renaud [42] formulated this example to demonstrate some of the

limitations of using second order t/S models; see FIC. 3. They fit a _cond order response surface using

least squares regression to five sample points from a fabricated eighth or(ler flmction within the region of

the optimum (x = 932). A kriging model using a constant for the global model and the (;aussian

correlation flmction of EQN. (7) is fit to the same five points; the original flmction, the five sample points,

and the RS and kriging models are shown in FIt;. 3.

hnlnediately evident from FI(I. 3 is fact that the kriging m(xlel interpolates the data points,

approximatillg the original fuaction better thall the reslx)nse surface model and predicting an optimum

which is much closer to the actual ol)timum. It is important to notice that outside of the design Sl)ace

(lefined by the sample points (920 < x < 945), neither model predicts well as expected; the kriging model

returns to the underlyiltg global model which is a coitstant. This is typical Ix'harlot fi)r a kriging m(xtel;

far from the sainple points, the kriging model returns to the underlying global model since the infhlence of

the sami)le points ha._ exponentially decayed away outside of the design space.
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Sixteen evenly spaced points (not including the sample points) are taken from within the range (920

< x < 9,15) to check the accuracy of the two approxinmtion models. The maximum al)solute error

(difference between the actual and predicted values), the average absolute error, and the root lnean square

error (MSE), which is:

(a:l)
_,o, (y .yi) 2

i

root, ]VISE : 1 nerror



where nerror is tlle number of points (= 16), are listed ill TABLE 1. Based on the error analysis in TABLE

1, it, call be concluded that tile kriging model approximates the original function l_tter since it, has a

lower root MSE, average error, and maxinmm error. A more involved multidisciplinary design example is

described ill the next section.

TABLE 1. Erroranalysisforo_¢:variablee_xample:.

2nd Order ItS Model Kriging Model

Max ABS(error) 3.134 2.507

Avg ABS(error) 1.911 0.776
root MSE 2.155 1.004

3. Aerospike Nozzle Design Example. The multidisciplinary design of an aerospike nozzle has

been selected as the test problem for comparing the predictive capability of RS and kriging models. The

linear aer(x_pike r(x'ket engine is the l)rOl)Uision system proposed for the Vent, ureStar [,13] reusable launch

vehicle illustraled in FIG. 4.

F I( ;. 4. I ;.ll t ur_St arr_:aaable_laan _'h w:h-i_'le with lin _-:ara¢:ro.spikepro'pal_ion ,_y_t _:m 121 I.

The aerospike rocket engine consists of a roeke! thruster, cowl, aerospike nozzle, and plug base

regions as shown in FI(:. 5. The aerospike nozzle is a truncated spike or plug nozzle that adjusts to the

ambient pressure and integrates well with launch vehicles [34]. The flow field structure changes

dramatically from low altitude to high altitude on the spike surface and in the base flow region (ef., [151,

[27], and [36]). Additional flow is injected in the ba_ • region to create an aerodynanfic spike [16] which

gives the aerospike nozzle its name and increases the base l)ressure and contribution of the base region to

the aerospike thrust.
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FI(?. 5. Ar.rospik_.,!otnpoT*entsandflou_fi_.ldct_ara,'t_ristic,sl211.

The analysis of the nozzle involves two disciplines_erodynamics and structures---since there is all

interaction between the structural displacements of the nozzle surface and the pressures caused by the

varying aerodylmmie effects. Thrust and nozzle wall pressure calculations are made using comt)utational

fluid dynamics (CFD) analysis and are linked to a structural finite element analysis model for determining

nozzle weight and structural integrity. A mission average engine specific impulse and engine

thrust/weight ratio are calculated and lLsed to estimate vehicle gr(_ss-lifi-off-weight (GLOW) based on

data supplied by Rocketdyne. The multidisciplinary domain decomposition is illustrated in Fit:. 6.

Korte, et al. [21] provide additional details on the aerodynamic and structural analyses for the ax_rospike

HOZZIc.

GLOW Gomoura

-_-_.i.ii/;:

.............. _-2_
FI(;. 6. ]tfltltidisciplinarydomai_tdacomposition[21[.

For this study, three design variables are considered for the nmltidiseiplinary design of the aerosl)ike

nozzle: thruster angle, base height, and length as shown in FIG. 7. The thruster angle is the entrance

angle of the gas froln the combustion chaml)er onto the nozzle surface; the base height and length refer to

the solid portion of the nozzle itself. A quadratic model is created to generate values of spline knot

surface angle slope and exit angle which define the nozzle profile, corresi)onding to specific values of

thruster angle, base height, and length.

_ M,,,Jule

_ san

212::_2,

FIc. 7. Nozzlegeometryde,_ignvariabl_,s[21].



Bounds for the design variables are _t based on information from Boeing Rocketdyne and viable

nozzle profiles from the quadratic model based on all combinations of thruster angle, height, and length

within tile design space. Second order RS models and kriging models are developed for each

response thrust, weight, and GLOW--in the next section; ol)timization of the aerospike nozzle using the

RS and kriging models for different objective functions is performed in Section 5.

4. Approximations for the Aerospike Nozzle Problem. The data used to fit the RS and

kriging m¢xtels is obtained from a 25 point orthogonal array (bose 5 3 I oarand) from [33 i. The sample

points are illustrated in FIG. 8 and are sealed to fit the three dimensional design space defined by the

l)ounds on the thruster angle, ba._ height, and length.

Length t

_¢'Height

Angle

FIG,. 8. ,_'ampl_:pointsoforthogonalarray.

Section 4.1 ('ontains the respollse surfa(_ models which are fit to the data; Section 4.2 contains the

kriging m(xlels. Error analysis of the respon_ surface and kriging models is discussed in Section 4.3, and

a graphical comparison of the approximation models is given in Section 4.4.

4.1. Response Surface Models. The RS models for weight, thrust, and GLOW are obtained using

ordinary least squares regression techniques and JMP [39]. The corresponding RS mo(le[_ are given in

EQNS. (1-1)-(16). The equations have I_en scaled against the I)aseline design due to the prol)rietary

nature of some of the data.

(1,1)

Weight = 0.810 - 0.116"a + 0.121"h + 0.152"1 + 0.065"a _ - 0.025*a*h +

0.0013*h _ - 0.0539"a*1 - 0.0131*h*l + 0.0301"1 '_

(15)

Thrust = 0.9968 + 0.00031"a + 0.0019"h + 0.0060"! - 0.00175"a _ + 0.00125*a*h -

0.0011"h _ + 0.00125"a*1 - 0.00198"h*1 - 0.00165"12

(16)

GLOW = 0.9930 - 0.0270"a + 0.0065"h - 0.0265"1 + 0.0307"a 2 - 0.0163*a*h +

0.0100*h 2 - 0.0226"a*1 + 0.0151*h*l + 0.0195"12

The R 2, R2-adjusted, and root MSE values for each of these second order RS models are summarized

in TABLE 2. As evidenced by the high R 2 and R2-adjusted and low root MSE values, the second order

t)olynomial m(xlel appears to capture a large portion of the observed variance.
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TABLE 2. Modeldiag_osticsofrespo_t._.surfac_mod_.ls.

Response
_[t:a.surc Weight Thrust GLOW

R 2 0.986 0.998 0.971

R 2-adjusted 0.977 0.996 0.95:_
root MSE 1.12% 0.01'_, 0.25%

4.2. Kriging Models for the Aerospike Nozzle Problem. The kriging models are built from

the same 25 sample points used to fit. tile resp(n_e surface models in Section 4.1. A constanl term (i.e..

the mean of the data) is selected for the underlying global model, and the (;aussian correlation function.

EQN. (7), is utilized for the local departures deternfined by the correlation matrix R.

Initial investigations revealed that a single 0 parameter w_q insufficient to accurately model the data

due to _:aling of the design variables. Therefore, a simt)le 3-D exhaustive grid search with a refinat)le

step size was used to find the maxilnum likelihood estinmtes for the three 0 1)arameters needed to obtain

the "best" kriging model. The resulting maximunl likelihood estimates for the three O l)arameters for the

weight, thrust, and (]LOW models are sunmmrized in TABLE 3; lhese values are for the _alcd Salnt)le

1)oints.

TABLE 3. 77tetaparam_.t_.rsforkriFiT_gmo&2._.

Rc._poTt._C

Weight f Thrust I GLOW

Ou_ut = L323...,_ 0.50 2.,137

With these, parameters and the corresponding 25 saml)le 1)oints. the kriging models are flflly

specified. A new point is predicted using these O values in coml)inati(m with EQNS. (8)-(10). The

accuracy of the RS and kriging models is examined in the next two sections.

4.3. Error Analysis of Response Surface and Kriging Models. An additional 25 randomly

selected points are used to verify the accuracy of the RS and kriging models. Error is defined as the

difference between the actual response from the computer analysis, y(x), and the predicted value, 9 (x),

from the RS or kriging model. The maximum absolute error, the average absolute error, and the root

MSE, EQN. (13), for the 25 randomly selected points are summarized in TABLE 4.

TABLE 4. Erroranalysiso/approxirnationmodel.u.

.qecondOrdcr RcsponscSur facc ]l lodcl s

Weight Thrust ]GLOW
Max ABS(error) --Y9_.57%] 0.032%[ 3.68'_J
Avg ABS(error) 2.44% 0.{}12% 0.53%
root MSE 4.54% 0.015% (l.90_(_

Krigin g Models (withconstanttcrm )
Weight] Thrust ] GLOW

Max ABS(error) _7.23_ I 0.04S%_ ..... 2:_:FX,.
Avg ABS(error) 2.51% 0.012%] 0.59%
root MSE 4.37% 0.018%| 0.89%
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For the weight and GLOW responses, the kriging models have lower maxinnnn absolute errors and

lower root MSEs than the RS models; however, the average absolute error is slightly larger for the kriging

models indicating that the average magnitude of the prediction error is larger for the kriging models than

the t/S moclels. As for thrust, the llS models are slightly better than the kriging models according to the

values in the table; the nmximum absolute error and root MSE are slightly less while the average absolute

errors are e_entially the same. It is not surprising that the RS mcntel predicts thrust bettAer; it. has a very

high tl 2 value, 0.998, and low root MSE, 0.01_. It is reassuring to note, however, that the kriging model,

despite using a constant term for the underlying global model, is only slightly less accurate than tile

corresp<)nding RS model. It appears that Ix)th approximations predict reasonably well with the kriging

models having a slight overall advantage because of the lower root MSE values.

4.4. Graphical Comparison of Response Surface and Kriging Models. In addition to the

error analysis of Section 4.3. a graphical comparison of tile RS and kriging models h_L_ been perfornled to

visualize differences in the two approxilnation models. In FIGS. 9-11, 3-D contour plots of thrust, weight,

and (ILOW as a function of angle, length, and base height are given. In each figure, the same contour

levels are used for the RS and kriging models so that the shapes of the contours can Ix, compared.

Thrust

2nd O_er

|"I(_. 9. Be.sponse.surfac¢andkrigin_modelsforthrust.

In Fit;. 9, it can be seen that the contours of thrust for the RS and kriging m_lels are very similar.

As evidenced by the high R 2 and low root MSE values, the RS model fits the data quite well, and it is

rea.._suring to note that the kriging m¢ntel resembles the RS m¢xlel even through the underlying global

model for the krigiug m(×lel is just a eonstanl term.
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Weight

FI<?. 10. Response.surfac_.andkrigingmoddsfovw¢_igJ_t.

The contours of lhe RS and kriging models for weight in FI('. 10 are also very similar, but the

influence of the localized perturbations caused by the Gaussian correlation function in the kriging mcglel

can begin to ]u, seen. The error analysis from Section 4.3 indicated that the kriging model for weight is

slightly more accuralr Ihan the RS model which may result from the small localized variations.

The general shape of the (IL()V_ r contours is the same in FIG. llA, however, the size and shape of the

different contours, particularly along the length axis, are quite different. The end view along the length

axis in FIG. lIB further highlights the differences between the two models. Notice also in FIG. lib that

the kriging m_×lel predicts a millimunl (]LOW within the design space centered around Height=-0.8,

Angle=0, along the axis defined by 0.2 < Length < 0.8; this minimum was verified through additional

experiments.

5. Optimization Using Response Surface and Kriging Models. The true test of the accuracy

of the RS and kriging models comes when the approximations are used in optimization. It is crucial that

any approximations used in optimizatioil prove reasonably aecurate, lest they lead the optimization

algorithm into regions of bad designs. Trust Region approaches (see, e.g., [231 and [351) and the Me×tel

Management fralnework (see, e.g., i41 and [10]) have l_en develotx_d to ensure that optimization
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algorittmk_ arc not led astray by inaccurate approximations. In this work, however, tile f()clLs has lyeen on

developing the approximation models, particularly the kriging models, and not on the optimization itself.

Four different optinfization problents are formula_d and solved to compare the accuracy of the I{S

and kriging mo(teks: (1) maximize thrust, (2) minimize weight, (3) lniifinfize (;LOW, and (.1) maxinfize

thrust/weight ratio. The first, two objective functions represent traditional single objectiw_, single

disciplilm optimizatioll problenk_. The second tw,, objective functiolL_ are lnore characterislic of

nnfltidisciplinary optimization; minimizing GLOW or maximizing the thrust/weight ratio requires trade-

offs tx_t.ween the aer(xlylmmics and structures disciplines. For each objective function, coz_traild limits

are placed on the remaining responses; for instance, constraints are placed on the nmximum allowable

weight and GLOW and the minimum allowable thrust/weigh{ ratio when maximizing thrust. Itowever,

none of the coxL_traints arc active or binding in any of the final results.

I!;ach opt infizat ion problem is solved using: (a) the RS model approximatiolks and (b) the kriging

m(xM approximations for thrust, weight,, and GLOW. The optimization is 1)erforlned using a Generalized

Reduced Gradient (GRC) algorithm. Three different starting points are used for each objective fuIlction

(the lower, middle, and upper bounds of the design variables) to assess the average number of analysis

and gradient calls necessary to obtain the optimum design within the given design space; the solutions for

each object iw, for each approximation converge to the saine optimuIn despit_ the initial starting point.

The same paralncters (i.e., slep size. tolerance, constrainl violation, etc.) are used wMfin the (II{G

algorithnl for each optinfization. The optinfization results are sunmmrized in TABLE 5. Design wLriable

and restxmse values have l_en scaled as a percentage of the t)aseline design due to the l)rot)rietary nature

of some of the data.

TABLE 5. Optimizationresultsusingresp¢m_e:._urfac_aTtdkriFingmodeJs.

Avg. _ of Avg. _ of Verified

Analysis Gradient Optimum Design Predicted Optimum Optimum

Calls Calls
Maximize Thrust

RS 27
Models

Krigtng 62
Models

Angle

4 tleight
Length

Angle
5 Height

Length

0.096 Thrust 1.0016

41.433 Weight 0.9450

1.01)0 Thr/Wt 1.0141
GLOW 0.9724

0.656 Thrust 1.0016

-0,627 Weight 0.9385
1.000 Thr/Wt 1.0157

GLOW 0.9690

1.0013

0.9,176
l .[1134
0.9759
1.0014
0.9155
1.0210
0.9683

0.02%

-0.27%
{).07%

4).36%
0.02%
2.51%

41.51%
0.08%

Minimize W _._ht

MoRd_'::ls [ 29 3

............i0, ....
Models I

: nge

Height - 1.000

Length - 1.000

--x@r_ T.N_-
Height -0.873
Length - 1.000

0.9957

Weight 0.7584
Thr/Wt 1.0533
GLOW 0.9936

--- _I'Kr u=_t 0_, 9_-

Weight 0.7725
Tlu'/Wt 1.0506
GI_OW 0.9824

0.74913
1.0555
0.9906

0.7443
1.0568
0.9914

-----WNNT,,
1.18%

-0.21%
0.30%

--- W.os_N
3.79%

-0.59%
-0.90%

Minimize GLOW

RS 30.67
Mode2s

Kriging 57.67
Mode.13

Maximize Thr_tio

3.33

6.33

m

Height
Length

Height
Length

- 0.8969

1.000 I Thr/Wt 1.0251
I CLOW 0.9660

-0.8,'_ I W'eight 0.9060
0.676 I Thr/Wt 1.0228

GLOW 0.9675

0.8617
1.0286
1.0146

0.8732
1.0302
0.9680

4.09%
-0.34%
-4.79%

3.75%
-0.72%
-0.05%

RS 27

Angle 0.096 Thrust 1.0016 0,9959 0.57%

Height -0.433 V_'eight 0.9450 0.907:_ 4.16%
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Mod_l_ Length 1.000 Thr/Wt 1.0141
GLOVe: 0.9724

Angle 0.656 Tlu-ust 1.0016
Krigin9 62 5 Height -0.627 Weight 0.9385
Modd._ Length 1.000 Thr/_A:t 1.0157

(]LOW 0.96.00

*At+) err_rt_rmindirat_sthatth¢_m_ddis_w_rpr_d_ictin_a(_ )i_dicat_sthatitisu_d_rpvedicti_Lq.

The following observatiol_s can be made based on tile data in TABLE 5.

t.OlT._ I -0.al%
1.0228 I -4.93%
J.oo_41 0.02%
0.90631 3.56%
1.0231 -0.7"_%
0.9666 (l.25%

• Averagcnu_nberofanalysisand_jradicntcalls: In general, the RS models require fewer analysis and

gradient calls to achieve the optimun_ than the kriging models do. This can be at lribuled to the fact

that the IIS models are simple second order polynomials wherc_ the kriging m(xlels are more

complex.

• Converqencerates: Although not shown ill the table, optimizatioll using the RS models tenets to

converge more quickly than when using kriging models. This can be inferred from the average

number of gradient calls which is one to three calls fewer for the RS models.

• Opti_rtumdcsi.qns: The oi)timum designs obtained from the RS and kriging m(xlels are essentially the

same for each objective fimction, indicating that both approximations sen(t the ()ptimizatioll

algoritlun in the same general direction. The largest discrepancy is the length for the minimize

GLOW optimization; RS models predict the optinmm CLOW occurs at the upper bound on length

(+1) while the kriging models yield 0.676. This difference is evident in FIG. 11.

• tS'cdicte_dopli'maandprcdicti(n_crrors: To check the accuracy of the 1)redicte(t optinm, the ot)timuln

design vahms for angle, height, and length are used as inputs into the original analysis ('(xles and the

Ix_rcentage difference t_tween the actual and predicted values is computed. The predictioll error is

less than 5_ for all cases and is 0.5% or less in three quarters of the results.

In summary, then. neither model colLsistently outperforms the other, and the difference in t)redietive

cal)ability of each model for each objective flmctiou is quite small. 77_ckrigi'ngmodrlsperforma.s'tt,ella.sthc

s_c_nd_rd_R5_n_dels_v_nth_u_hth_l_balp_rti_n_f_h_kriqin_7ru_d_lis_nl_ac_nstant. Ongoing work to

improve rot×tel accuracy and checking adequacy of fit is detaile(1 in the next section.

6. Closing Remarks and Future Work. This work represents a preliminary investigation into

the use of kriging as an alternative statistical-based approximation technique fi)r modeling non-random,

deterministic computer experiments. A three variable engineering design example is u_d to compare the

approximation capability of respon_ surface modeling and kriging. The example is the multidisciplinary

design of an aerospike nozzle which includes a CFD and a finite element model. With this simple, yet

realistic engineering example, the u_ of kriging models as an alternative approximation technique has

been demonstrated. At this point, there is inconclusive evidence to state that one approximatioll lnethod

is more advantageous than another; however, the kriging lnodels, using only a colustant underlying global

model and a Gaussian correlation function, perform as well as the second order respon_ surface models.

There are several research issues to address for the application of kriging and DACE methods for

other (and larger) engineering design problen_s.

• Fittingakrigingmodel: Fitting a kriging m(xtel requires solution of an k-dimensional, uncolLstrained,

non-linear ot)timization problem, EQN. (12), in order to determine the maximum likelihood estimates

of the 0 parameters for the "best" kriging model. Pattern search methods and simulated annealing

algorithms are currently being employed to perform this optimization. For small problems with

relatively few sample l)oints, this optimizatioll is rather trivial. However, as the size of the problem
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increases and tile number of sample points increases, the added effort needed to obtain the "best"

kriging model may quickly l)egin to outweigh the benefit of building the approxinlation.

• Sclectingakriqi'_gmodel: Ill this example, a constant is used for the global portion of the kriging

model 1)a_d on the success of the work in [30 i, [37 I, and [47]. However, using a global polynomial

model for f(x) in Eqn. (5) may further improve the accuracy of the kriging model. Giunta 11]

t>erforms a preliminary investigation of such all approach and finds that minimal improvement was

obtained.

• IS'cdictingwithakrigingmodel: Unlike RS model prediction, prediction with a kriging model requires

the inversion and multiplication of several matrices; these matrices grow as the number of sample

ix)ints increases. For large problen_s, prediction with the kriging model may beconm computationally

extrensive ill and of itself. Furthermore, it. is more difficult to look at. a kriging model and determine

the effects of the design variables on the response(s) since the global model is usually taken as a

constant, and each prediction point is essentially the sum of exponentially decaying functions based

on R.

• Valida.tingakrigingm_teh With RS models, R 2 values and residual plots can lye used to assess model

fit and accuracy. Since kriging models interpolate the data, there are no residuals and alternative

checks nnkst Ix, implemented to validate the model. Ill this exalnple all additional 25 random data

l×)ints are used to check model adequacy; however, more formal approaches cxist. Otto, et al. (31]

and !32 i and Yesilyurt and Patera [48] have develotx',d a Bayesian-validatcd surrogate approach which

uses additional validation points to make qualitative assessments of the quality of the approximation

m(x[el and provide theoretical bounds on the largest discrepancy between the lnodel and tile actual

COml)uter analysis. All alternative method which does not require additional points is leave-one-out

cro_ validation [26]. Each sample point used to fit the model is removed one at a time, the lnodel is

rebuilt without the sample point, and tile difference between the model without the sample point and

actual value at the salnple point is eomt)uted for all of the sample points. Neither al)t)roach was

iml)lenmnted ill thks example due to the increased computation effort required.

• Desitp_ of experiments for building hwigingmodels: Are there designs which are better suited for

sampling computer experiments and building kriging models than for sampling physical exwximents

and building RS models? The opinions on the appropriate experimental design vary; lhe only

('on_nsus reached thus far is that desiglrs for non-random, deterministic computer analyses should be

space filling. Ill this example, orthogonal arrays are u_d to build approximation following the work

by Booker, et al. [3] and [4]. Ciunta Ill] u_s D-optimal designs to fit his kriging and RS models;

Sacks, el al. [38] suggest using IMSE-optilnal desiglrs; and Koehler and Owen [20] disc_rss minimax,

maximin, Latin hypercube, and scrambled net desigi_s for computer experiments.

l)espite the added complexity of fitting, _rsing, and validating a kriging model, the potential gains in

model accuracy justify continued investigation into the approach. The kriging software under

devel()pment will facilitate the use and validation of kriging models, increasing their attractiveness for

engin(_ring applicatiolrs. Finally, future work on the aerospike nozzle design problem includes expanding

the scot)e of the problenl to include more design variables and respol_ses and investigating the impact of

decolnt×)sing the problem into its disciplines by building approximation models of each discipline

set)arately and examining the effect of different multidiseiplinary design formulations (e.g., [11 and [8]) on

the solution.
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